Droplet Shapes on Superhydrophobic Surfaces under Electrowetting Actuation
نویسندگان
چکیده
Droplet behavior on structured surfaces has recently generated a lot of interest due to its application to selfcleaning surfaces and in microfluidic devices. In this paper, the droplet shape and the droplet state on superhydrophobic surfaces are predicted using the Volume of Fluid (VOF) approach. Various structured surfaces are considered and the apparent contact angles are extracted from the predicted droplet shapes. Droplet dynamics under electrowetting are also modeled, including contact line friction. The model is validated against in-house experiments and experiments from the literature. The droplet state, droplet shape and apparent contact angles match well with the experimental measurements. The Cassie and Wenzel states on structured surfaces are also accurately predicted. Further, the electrowetting-induced transition from the Cassie to the Wenzel state and the reversal to the Cassie state is predicted for two different superhydrophobic surfaces. The transient wetting process, intermediate energy states and droplet shapes during electrowetting are simulated. The effective contact line friction coefficient on pillared surfaces is predicted to be 0.14 Ns/m 2 , consistent with published values.
منابع مشابه
Fluorinated Superhydrophobic Surfaces for Digital Microfluidic Devices with Electrowetting on Dielectric and Magnetic Actuation
Digital microfluidics (DMF) is a popular alternative to traditional in-channel microfluidics, which allows precise control of individual droplets. Most commonly used droplet manipulation methods for DMF are electrowetting on dielectric (EWOD) and magnetic actuation. Both methods require high surface hydrophobicity to facilitate droplet movement, and often superhydrophobic surfaces are used to f...
متن کاملDroplet microfluidics on a planar surface
This work reports on the modelling of, and experiments on, a method in which liquid is transported as droplets on a planar hydrophobic surface with no moving parts, merely through electrostatic forces generated by the underlying electrodes. Two-directional transportation along a straight electrode path and across a junction, fusion of two droplets and methods for importing, exporting and filter...
متن کاملDroplet behavior on superhydrophobic surfaces: Interfaces, interactions, and transport
Dash, Susmita. Ph.D., Purdue University, December 2014. Droplet Behavior on Superhydrophobic Surfaces: Interfaces, Interactions, and Transport. Major Professor: Suresh V. Garimella, School of Mechanical Engineering. The primary objective of the present work is to study droplet dynamics on smooth hydrophobic and textured superhydrophobic surfaces, and to understand the dependence of interfacial ...
متن کاملElectrowetting on a lotus leaf.
Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf, which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic an...
متن کاملDynamics of droplet motion under electrowetting actuation.
The static shape of droplets under electrowetting actuation is well understood. The steady-state shape of the droplet is obtained on the basis of the balance of surface tension and electrowetting forces, and the change in the apparent contact angle is well characterized by the Young-Lippmann equation. However, the transient droplet shape behavior when a voltage is suddenly applied across a drop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014